Sunday, March 30, 2025

Finance and Accounting Automation - Budget Planning Tool

 Notes:

  • What problem does it solve?: Helps businesses plan and track their budgets, comparing actual vs. planned expenses.

  • How can businesses benefit from customizing the code?: Businesses can tailor budget categories, add multiple forecasts, and track variances.

  • How can businesses adopt the solution further?: Extend to integrate with accounting software to track spending in real-time.

Actual Python Code:

import pandas as pd


class BudgetPlanner:

    def __init__(self, categories, planned_amounts, actual_amounts):

        self.categories = categories

        self.planned_amounts = planned_amounts

        self.actual_amounts = actual_amounts


    def create_budget_df(self):

        data = {

            'Category': self.categories,

            'Planned Amount': self.planned_amounts,

            'Actual Amount': self.actual_amounts,

            'Variance': [p - a for p, a in zip(self.planned_amounts, self.actual_amounts)]

        }

        return pd.DataFrame(data)


    def analyze_budget(self):

        df = self.create_budget_df()

        print("Budget Overview:")

        print(df)

        total_planned = df['Planned Amount'].sum()

        total_actual = df['Actual Amount'].sum()

        total_variance = df['Variance'].sum()

        print(f"\nTotal Planned: ${total_planned:.2f}")

        print(f"Total Actual: ${total_actual:.2f}")

        print(f"Total Variance: ${total_variance:.2f}")

        return df


# Example usage

categories = ['Marketing', 'Salaries', 'Operations']

planned = [5000, 30000, 12000]

actual = [4500, 29000, 12500]

budget = BudgetPlanner(categories, planned, actual)

budget.analyze_budget()



No comments:

Post a Comment

IoT (Internet of Things) Automation - Smart Energy Usage Tracker

  Notes: Problem Solved: Logs and analyzes power usage from smart meters. Customization Benefits: Track per-device energy and set ale...