Notes:
-
Problem Solved: Automatically scores leads based on engagement and fit, prioritizing sales follow-ups.
-
Customization Benefits: Adjust scoring logic based on your customer persona or sales cycle.
-
Further Adoption: Integrate with email systems, web tracking, or CRM platforms like Salesforce or HubSpot.
Python Code:
import pandas as pd
def score_leads(df):
def calculate_score(row):
score = 0
if row['industry'] in ['tech', 'finance']: score += 20
if row['email_opened'] > 3: score += 10
if row['website_visits'] > 5: score += 15
if row['demo_requested']: score += 30
return score
df['lead_score'] = df.apply(calculate_score, axis=1)
return df.sort_values(by='lead_score', ascending=False)
# Example
lead_data = pd.DataFrame([
{'name': 'Alice', 'industry': 'tech', 'email_opened': 5, 'website_visits': 7, 'demo_requested': True},
{'name': 'Bob', 'industry': 'retail', 'email_opened': 1, 'website_visits': 2, 'demo_requested': False}
])
print(score_leads(lead_data))
No comments:
Post a Comment