Notes:
-
Problem Solved: Predicts future product demand using historical sales data, aiding in inventory planning.
-
Benefits: Helps businesses plan inventory levels based on forecasted demand, optimizing stock levels.
-
Adoption: Integrate this forecasting model with sales data to generate periodic demand forecasts.
Python Code:
import pandas as pd
from sklearn.linear_model import LinearRegression
import numpy as np
class DemandForecaster:
def __init__(self, sales_data):
self.sales_data = pd.DataFrame(sales_data)
self.model = LinearRegression()
def train_model(self):
X = np.array(self.sales_data['Month']).reshape(-1, 1)
y = self.sales_data['Sales']
self.model.fit(X, y)
def forecast_demand(self, months_ahead):
future_months = np.array(range(len(self.sales_data) + 1, len(self.sales_data) + 1 + months_ahead)).reshape(-1, 1)
forecast = self.model.predict(future_months)
return forecast
# Sample sales data
sales_data = [
{'Month': 1, 'Sales': 200},
{'Month': 2, 'Sales': 220},
{'Month': 3, 'Sales': 240},
{'Month': 4, 'Sales': 260},
{'Month': 5, 'Sales': 280},
]
# Initialize forecaster
forecaster = DemandForecaster(sales_data)
# Train model
forecaster.train_model()
# Forecast next 3 months
forecast = forecaster.forecast_demand(3)
print(f"Forecasted demand for next 3 months: {forecast}")
No comments:
Post a Comment