Notes:
-
Problem Solved: Predicts estimated time of arrival (ETA) for shipments based on carrier, distance, and historical data.
-
Benefits: Enhances planning accuracy and provides customers with reliable delivery expectations.
-
Adoption: Can be embedded in customer-facing shipment tracking portals or used internally.
Python Code:
import pandas as pd
from sklearn.linear_model import LinearRegression
import numpy as np
class ETAPredictor:
def __init__(self, training_data):
self.df = pd.DataFrame(training_data)
self.model = LinearRegression()
def train(self):
X = self.df[['DistanceKm', 'CarrierRating']]
y = self.df['DeliveryDays']
self.model.fit(X, y)
def predict_eta(self, distance_km, carrier_rating):
input_data = np.array([[distance_km, carrier_rating]])
return self.model.predict(input_data)[0]
# Sample historical data
data = [
{'DistanceKm': 100, 'CarrierRating': 4.5, 'DeliveryDays': 2},
{'DistanceKm': 300, 'CarrierRating': 4.0, 'DeliveryDays': 4},
{'DistanceKm': 50, 'CarrierRating': 5.0, 'DeliveryDays': 1},
{'DistanceKm': 400, 'CarrierRating': 3.5, 'DeliveryDays': 5},
]
predictor = ETAPredictor(data)
predictor.train()
# Predict ETA for a new shipment
eta = predictor.predict_eta(250, 4.3)
print(f"Predicted ETA (days): {round(eta, 2)}")
No comments:
Post a Comment