Notes:
-
Problem Solved: Optimizes placement of items in a warehouse to minimize retrieval time and maximize space usage.
-
Benefits: Improves picking efficiency and reduces labor costs in warehousing operations.
-
Adoption: Integrate with WMS (Warehouse Management Systems) for real-time bin allocation.
Python Code:
import pandas as pd
class SpaceOptimizer:
def __init__(self, item_data):
self.df = pd.DataFrame(item_data)
def optimize(self):
# Sort items by frequency of picking (descending)
self.df = self.df.sort_values('PickFrequency', ascending=False)
self.df['AssignedZone'] = ['Front' if i < len(self.df)*0.3 else 'Middle' if i < len(self.df)*0.7 else 'Back'
for i in range(len(self.df))]
return self.df[['ItemID', 'PickFrequency', 'AssignedZone']]
# Sample item data
items = [
{'ItemID': 'X1', 'PickFrequency': 120},
{'ItemID': 'X2', 'PickFrequency': 75},
{'ItemID': 'X3', 'PickFrequency': 30},
{'ItemID': 'X4', 'PickFrequency': 10},
{'ItemID': 'X5', 'PickFrequency': 50},
]
optimizer = SpaceOptimizer(items)
optimized_layout = optimizer.optimize()
print(optimized_layout)
No comments:
Post a Comment