Notes:
-
What problem does it solve?: It audits patient data to ensure that it’s accurate, complete, and complies with regulations.
-
How can businesses or users benefit from customizing the code?: Healthcare organizations can customize the code to fit their auditing policies and compliance requirements.
-
How can businesses or users adopt the solution further, if needed?: The solution can be enhanced to automatically flag discrepancies and notify relevant personnel.
Python Code:
import pandas as pd
# Sample patient data
data = pd.DataFrame({
'Patient_ID': [101, 102, 103, 104],
'Name': ['John Doe', 'Jane Smith', 'Tom Brown', 'Lisa White'],
'Age': [30, 45, 50, 39],
'Condition': ['Diabetes', 'Hypertension', 'Asthma', 'Cancer']
})
# Check for missing values
def audit_data(df):
missing_data = df.isnull().sum()
print("Missing Data:\n", missing_data)
audit_data(data)
No comments:
Post a Comment